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The first order pair equations have been solved for the four electron sequence Li- to Ne 6+. A 
variational perturbation procedure is blended with numerical methods to generate a method for 
computing pair functions which is both accurate and efficient with respect to time of computation. 

The variation in the pair correlation energies as a function of atomic number is discussed and the 
asymptotic behaviour of E2(/) as 1-4 and/-6 for singlet and triplet states respectively is corroborated. 
An estimate is made for the electron affinity of lithium. 

Die Paargleichungen 1. Ordnung wurden fiir die Reihe der Ionen mit 4 Elektronen yon Li- bis Ne 6 + 
gelSst. Ein Variations-StSrungsverfahren wird mit numerischen Methoden verkntipft, um eine Methode 
zur Berechnung yon Paarfunktionen zu erhalten, die genau ist und mSglichst geringe Rechenzeiten 
benStigt. Die Variation der Paarkorrelationsenergien als Funktion der Atomnummer wird diskutiert 
und das asymptotische Verhalten yon E2(/) wie 1-4 und l  -6 fur Singulet- und Tripletzustiinde wird 
bestgtigt. Ftir Lithium wird die Elektronenaffinitiit abgescNitzt. 

R6solution des 6quations de paires au premier ordre pour la s6rie ~t 4 61ectrons: Li- / t  Ne 6 +. Un 
proc6d6 de perturbation variationnel est li6 ~t des m6thodes num~riques pour engendrer une m6thode 
de calcul des fonctions de paires simultan~ment pr6cise et 6conomique. La variation des 6nergies de 
corr61ation de paires en fonction du nombre atomique est discut~e ainsi que le comportement asympto- 
tique de E2(I) par rapport ~t 1-4 et 1-6 pour les 6tats singlet et triplet respectivement. 

Introduction 

The re  have  b e e n  n u m e r o u s  a t t e m p t s  to  o b t a i n  a t o m i c  wave  func t ions  in  which  
co r r e l a t i on  of e lec t ron  m o t i o n  is pe rmi t t ed .  A m o n g s t  review art icles  c o n c e r n i n g  
the  p r o b l e m ,  those  of N e s b e t  [1 l ,  Sinano~, lu  [21, Ke l ly  [3],  a n d  S i l v e r m a n  a n d  
B r i d g m a n  [4]  are  very  in fo rmat ive .  U n l i k e  one  e lec t ron  func t ions ,  c o m p i l a t i o n s  
of two  e lec t ron  wave  func t ions  for a t o m s  have  as yet  to appear .  

A n  exact  so lu t i on  of the N e lec t ron  wave  e q u a t i o n  for a n  a t o m  m a y  be  ex- 
pressed  in  the  fo rm 

~p = tpo + ~ a(ij) + ~ fi(ijk) +""  
ij ijk 

where  the  l ead ing  t e r m  is a Slater  d e t e r m i n a n t  c o m p o s e d  of one  e lec t ron  func t ions .  
This  is c o m p l e m e n t e d  by  successive s u m m a t i o n s  wh ich  a l low for all  two e lec t ron,  
three  e lec t ron ,  a n d  h igher  o rder  i n t e r a c t i o n s  respectively.  The  two e lec t ron  
c o m p o n e n t  is def ined  by  

~(ij) = detl(pl (rl) q~2(r2).., q)i_l(ri-1) q)j-l(rj-1) 

�9 (pi+l (r i+l)  ~Oj+l(rj+1) z(rlrj)l. 
24* 
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In this expression z ( r~r j )  is an antisymmetrised pair function whilst normalisation 
and antisymmetrisation of e((j) is implied by the symbol det. 

Termination of the series at the opening term ~Po and invocation of the variation 
principle, as is well known, leads to the Hartree-Fock equations for the one electron 
functions q)k(rk). On truncation at the second term, there is a choice in the manner 
in which the equations for the two electron functions may be derived. 

If ~Po is held to be a determinant of Hartree-Fock one electron functions then 
the two electron functions are given by the equations derived originally by 
Sinano~lu [5] though links to an early study of Fock, Veselov, and Petrashen [6] 
have been traced. Such equations are also known as the Bethe-Goldstone equa- 
tions. As Nesbet has succinctly written, "An nth order Bethe-Goldstone equation 
can be defined as the exact solution of an n-particle Schr6dinger equation with the 
wave function constrained to be orthogonal to the remaining N - n orbitals of an 
N particle Fermi Sea" [1]. When the one electron functions are determined 
variationally together with the two electron functions then the one electron 
functions no longer satisfy the Hartree-Fock equations. Rather they comply to 
the equations developed by Nesbet following the studies of Brueckner [7] and 
independently by Szasz [8]. 

Cogent arguments have been presented for the retention of a Hartree-Fock 
basis. In the Hartree-Fock model as applied to an atom, each electron is regarded 
as moving in the field of the nucleus and the spherically averaged charge distribu- 
tion of the remaining electrons. A natural extension of this model is to permit each 
pair of electrons to interact directly whilst moving in the nuclear field and the 
averaged charge distribution of the remaining electrons as described by their 
Hartree-Fock functions. 

Often in the calculation of such pair functions, the Hylleraas inequality is 
used within a variational perturbation approach. Less frequently numerical 
methods have been employed. In this study, the central theme of which is a four 
electron atomic sequence, a blend of the two approaches has been attempted to 
obtain the first order pair functions. 

The Pair Equations 

The theory of Sinano~lu has been delineated several times by a variety of 
authors and does not require repetition. In the particular example of Beryllium, 
Byron, and Joachain [9] show that commencing from the functional 

F (~t) = < ~t[ Ho - Eo [ ~t> + 2 ( ~tl HI - El l ~o > 

the pair function from which ~t is constituted are given as solutions to the equation 
of type 

[-HHI~(r) + HHF(r ') --C i --~;j'] Zij(r, r') 

-- - [1/Ir - r'l - V~(r) - Vj(r) - Y~(r') - %(r') - e t q/)] (1) 

1 
V~ [q~i(r) q~j(r') - -  q)i(r ')  q~j(r)] . 
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The zeroth order function ~0 o satisfies the Hartree-Fock equation 

Ho~o =Eo~o 
with 

Eo-- ' - /~  8 i 

e~ being the one electron orbital energy. The Hartree-Fock coulomb and exchange 
energies are expressed within Vi(r) 

Vi(r ) f (r) = ~ ~&(r') 1fir - r'] qh(r') dr' f (r) 

- ~  qh(r') 1lit - / I  f(r') dr' ~oi(r) 

E 1 = ~ e ~ (/j) is compounded from such coulomb and exchange terms. 
i j  

A perturbation arises from the difference between the exact electron inter- 
action and that provided by the Hartree-Fock potential. Corrections to the total 
energy to third order may then be evaluated in the usual manner. For example 
with the function ~t held orthogonal to ~o, the second order energy is given by 

E2 = <~o I H1 I~t>. 

Partitioned as a sum of pair energies 

E2 = Y, ~2(q) 
ij  

where 
/ I  

82 (/j) ~ 

81(/j) 1 
-- l / / ( r ' ) .  ~ ( r ' )  - ~ [qoi(r) q~j(r') 

- qh(r') cpj(r)]>. 

Byron and Joachain discuss further the relative merits of various functional forms 
to represent the trial function. Adoption of a Lcgendre expansion for z(qr2) 
in the manner first suggested by Luke, Meyerott, and Clendenin [10] permits 
the pair Eq. (1) to be uncoupled. 

x i J ( r l  r 2 cos  012) = 1/4 ~z ~ U[Y(q r 2 ) / r  1 r 2 �9 P l ( c o s  012),  
i 

The expansion coefficients may be obtained as solutions to the set of equations 
of type 

[ 9 2 02 2Y(rl) 2Y(r2) l ( l+ 1) l( l+ 1) ] 
+ ~ + + 8 i -  8j~ U,(r 1 r2) l r~ r~ 4 r~ 

= rl r2 Gt(rl r2). (2) 

In these equations Y(r~) is a potential function containing the nuclear and Hartree- 
l~ock potentials, whilst G~(q r2) consists of terms arising from the expansion of 
1/[r - r'L, together with the use of Hartree-Fock one electron functions to represent 
CPk(rk). 
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Alternatively the coefficients might be expressed in an analytical form, for 
example a configuration mixing function could be adopted. 

UI~ (rl r2) = E Cl,,n(rTr~ + r~ r 7) 

�9 [(exp(-e/2.  rl) exp(-i l l2,  r2) 

+ exp(-fl/2rl) exp(-0(2,  rz))] 

in which the sign indicates the symmetry with respect to the space co-ordinates. 
The advantages of this type of function are marred by the slow convergence of the 
series. Accuracy in the calculation of the higher partial waves is inhibited. In an 
early study of the problem Schwartz remarks "For high 1 values the most important 
part of this function is concentrated very sharply about the point rl = rz and a 
direct attack on the associated two dimensional partial differential equations 
might be the best way to solve for these highly correlated functions" [11]. 

It is this suggestion which is pursued further here. The l = 0 component is 
determined using the above type of function in which the number of terms included 
in the expansion is taken to yield the desired accuracy for the pair under consider- 
ation. Higher partial waves are determined by direct solution of the associated 
differential equations. By proceeding in this manner a further difficulty is obviated. 
"The 120 strip s wave calculation required the solution of 14000 linear equations 
which took about lh on the IBM 360/75. The s wave cut off was taken at 24 a.u. 
which was still not far enough from the nucleus. Clearly it was not practical to 
resolve the equations with a larger cut off. The functions for l > 0 were much less 
difficult and could be obtained easily in only a few minutes." Such is the comment 
of Winter and McKoy in seeking a numerical solution of the hydrogenic pair 
equation for a three electron atom [12]. This viewpoint is corroborated by the 
present authors' experience with the helium atom. Numerical calculation of the 
s wave to an accuracy comparable with the higher waves is the major part of a 
total numerical calculation. In sharp contrast, the s wave for the (ls ls) pair of 
beryllium as obtained here required ,-~ 12 secs upon a UNIVAC 1108, the total 
calculation of all higher waves and energies being completed in the order of four 
minutes. 

The use of finite difference methods in obtaining pair functions for helium 
has been elaborated in a series of papers by McKoy and Winter which are notable 
for their clarity [13]. Similar techniques are deployed in this study. The kernel of 
the approach is to transform the partial differential equations (2) into a set of 
linear equations by means of a difference approximation. A fourth order difference 
has been adopted. 

~r 2 ,,~ - f ( r -  2h) + f ( r -  h) 

5 
2 f ( r ) + 4  f ( r + h ) -  ~--~f(r+2h)]. 

At the boundary a switch to a second difference is effected. The calculations are 
performed over a range of grid sizes, defined by h, the equations being solved by the 
method of successive over-relaxation. By use of the Bolton-Scoins relation 
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linking the energy at h = 0 to the energies evaluated at other choices for h, accurate 
values for the energy may  be obtained [14]. 

E(h) = E(O) + C2 h2 -}- C4 h4 -ff C6 h6 q- "" . 

The (ls is), (2s 2s) and (ls 2s) pairs of the four electron sequence L i - ( l s  2 2S 2) 
to Ne  6 + (ls z 2s 2) now will be discussed in detail against a comparat ive  background  
provided by earlier studies. 

The ( ls  ls) Pair 

Collated in Tables 1, 2 and 3 are the pair correlat ion energies for the four 
electron sequence. Beryllium is highlighted in the opening tables. 

For  the (ls ls) pair the results are obtained in the manner  which has been 
discussed. A configurat ion function is employed of the form 

Vo(qr2) = ~ Ci(r~'r~ + r~r'~) e x p ( -  ~rl) exp ( -  0{r2) . 
i 

That  functions of this type simulate very well the behaviour  of the s wave is 
indicated by a compar ison  of the analytical studies of Byron and Joachain  on the 
helium sequence with the numerical  functions obtained by M c K o y  and Winter  
[12, 15]. A 65 term expansion is taken with the parameter  c~ assigned a value equal 
to the a tomic  number,  and m, n ranging over 0, 1 to 10, 10 respectively. It  is f rom 
the compilat ion of Clementi that  the Har t ree -Fock  functions required have been 
obtained [163. 

In  the calculation of the higher partial waves "square root"  grids of size 
20, 25, 30, 35 and 40 are adopted  with the cut-off for the (is ls) pairs being determined 
as 15/Z. The cut-off requirement has been gauged from studies upon  two electron 
systems, and investigations in which a variety of choices for the cut off were 
employed. 

Table 1. Partial wave components of E2(I ) for the electron pairs of beryllium, and the third order 
energies e 3 (atomic units) 

l Pair ls T ls+ Pair 2s$ 2s+ Pair lsT2s ~ Pair ls~2s~ 
__g2 __~2 __82 __~2 

0 0.01247 0.00226 0.000522 0.000014 
1 0.02248 0.02214 0.001241 0.000663 
2 0.00355 0.00382 0.000148 0.000050 
3 0.00101 0.00119 0.000041 0.000008 
4 0.00039 0.00048 0.000015 0.000002 
5 0.00018 0.00023 0.000007 0.6 x 10 -~ 
6 0.00009 0.00012 0.000003 0.2 x 10- 6 
7 0.00005 0.00007 0.000002 0.1 x 10- 6 
8 0.00003 0.00004 0.000001 0.5 x 10- 7 
9 0.00002 0.00003 0.000001 0.3 x 10- 7 

> 10 0.00005 0.00007 0.000002 0.4 x 10-7 
Totals 0.04031 0.03044 0.001993 0.000738 
- e 3 0.00205 0.00745 0.000200 0.000100 



360 B. C. Webster and R. F. Stewart: 

Table 2. A comparison of the pair correlation energies for beryllium (a.u.) 

Source -e( ls ls)  -e(2s2s)  - e ( l s2 s )  (Expt. -0.0944) % E~"J/E ~ 

Watson a 0.03759 0.04178 0.00505 0.08442 89.4 
Nesbet b 0.04183 0.04535 0.00586 0.09304 98.6 
Geller, Taylor, and Levine ~ . 0.04208 0.04438 - -  0.09143 96.9 
Kelly d 0.042N2 0.04488 0,00497 0.09099 96.4 
Szasz and Byrne ~ 0,04235 0.04450 ~-. 0.09182 97,3 
Present calculation 0.04236 0.03789 0.00606 0.08631 91.4 
Byron and Joachain [9] 0.04247 0,04482 0.00524 0.09253 98.0 
Bunge f 0.04261 0.04550 0.00530 0.09341 99.0 
Tuan and Sinano~lu g 0.04395 0.04392 0.00648 0.09435 99.9 

Watson, R.E.: Physic Rev. 119, 170 (1960). 
b Nesbet, R,K,: Physic, Rev. 155, 51 (1967). 

Geller, M., Taylor, H, S,  Levine, H. B.: J. chem. Physics 43, 1727 (1965). 
a Kelly, H. P. : Physic. Rev. 131,684 (1963); 136, 3896 (1964). 

Szasz, L., Byrne, W.: Physic. Rev. 158, 34 (1967). 
f Bunge, C.F.: Physic. Rev. 168, 92 (1968). 
g Tuan, D. F., Sinano[glu, O. : J. chem. Physics 41, 2677 (1964). 
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Fig. 1. The variation of the (is ls) (2s2s) and (ls2s) pair correlation energies (a.u.) with atomic number 
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Table 3. The pair and total correlation energies of the beryllium sequence (a.u.) 

P a i r ~  3 4 5 6 7 8 9 10 

- e ( l s l s )  0.04234 0.04236 0.04233 0.04230 0.04229 0.04228 0.04228 0.04228 
-e(2s2~ 0.02232 0.03789 0.05005 0.06118 0.07159 0.08178 0.09164 0.10135 
-~(ls2s) 0.00247 0.00606 0.00840 0.00995 0.01102 0.01187 0.01250 0.01299 
- E c~ 0 .06713  0.08631 0.10078 0.11343 0,12491 0.13593 0.14642 0.15662 
Expt. a - -  0.0944 0 . 1 1 2 3  0 . 1 2 6 8  0 , 1 4 1 2  0 . 1 5 5 1  0 . 1 6 8 4  0.1814 
% E c a l e / E  ~ - -  91.4 89.7 89.5 88,5 87.6 86.9 86.3 

a Clementi, E.: I.B.M. Journal of Research and Development 9, 2 (1965). 
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Fig. 2. a The variation of the (ls ls) pair correlation energy for the helium isoelectronic sequence as 
compared with the beryllium sequence (a.u.). b The energy of the s wave for the helium sequence and 
for the beryllium sequence (a.u.). Curve A: He sequence. Curve B: Be sequence without projection 

of 2s functions, Curve C: Be sequence with projection of 2s functions 
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Table 4. Some partial wave contributions to the second order energy for the (lsls) and (2s2~ pairs 
ofthe Be sequence 

Pair• 3 4 5 6 7 

(lsls) 
e~(l=~ -0.01318 -0.01247 -0.01197 -0.01163 -0.01139 
e2(/=1) -0.02128 -0.02248 -0.02323 -0.02374 -0.02412 
e2(/=2) -0.00344 -0.00355 -0.00362 -0.00367 -0.00370 

'~z(/=l) -0.01151 -0.02214 -0.03021 -0.03747 -0.04433 
e2(/=2) -0.00241 -0.00382 -0.00449 -0.00491 -0.00519 

8 9 10 

-0.01121 -0.01107 -0.01096 
-0.02440 --0.02463 -0.02481 
-0.00373 --0.00375 --0.00376 

-0.05096 -0.05744 -0.06383 
-0.00541 -0,00557 -0.00570 

Amongst the partial waves the p wave provides the major component to E 2 
the second order energy. For  beryllium with eZ(p) equal to -0.02248 a.u., and 
E2(ls  ls) having a value -0.04031 a.u., the contribution of the p wave is 56%. 
With the third order energy E 3 (ls ls) for beryllium evaluated to be -0.00205 a.u., 
the total (ls ls) pair correlation energy is -0.04236 a.u. upon the present calcu- 
lation. That this result is in accord with those obtained by other workers may be 
seen from Table 2. 

The variation in the (ls Is) pair correlation energy with atomic number is 
shown in Fig. 1. In marked contrast to the other pairs, the (ls ls) pair energy is 
almost independent of the atomic number. It is interesting that this behaviour is 
not found when a (ls ls) pair of a two electron sequence is studied. In Fig. 2a the 
pair correlation energies for the helium isoelectronic sequence is displayed as a 
function of atomic number. Pair correlation energies for the two electron sequence 
are obtained in an analagous manner to those for the four electron sequence, 
using first order Hartree-Fock perturbation theory. 

For  the two electron atoms the (ls is) pair correlation shows a marked 
variation with atomic number, an effect which is suppressed when the (ls ls) 
pair is dressed by an outer pair of electrons. The role of the (2s 2s) electron pair in 
affecting the correlation energy of the inner pair may be seen in Fig. 2b. As has 
been noted by others, the outer electron pair exerts its influence primarily through 
the exclusion principle [9]. If the 2s component in the (is ls) pair energy is not 
projected out, the energy of the s wave for the four electron atom follows that of the 
two electron atom with increase of atomic number. When the 2s component 
is removed, the s wave has a higher energy and this term rises with atomic number. 
The effect is counterbalanced by the higher partial waves in such a manner that 
the (ls ls) pair correlation energy appears to be almost independent of the atomic 
number. Pertinent data is shown in Table 4. 

The (2s 2s) Pair 

The partial wave components of the second order energy for the (2s 2s) pair 
of beryllium are listed in Table 1, together with the third order energy. These 
results are obtained as for the (Is ls) pair with the modification that the parameter 
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is equated to Z -  2 and the cut off in the numerical calculation is taken at 
33.0/(Z - 2). The contribution of the s wave to (2s 2s) pair is seen to be markedly 
less than in the case of the (Is is) pair. For the p wave the contribution to the total 
second order energy for the (2s 2s) pair is now almost totally dominant, being 
73 % for beryllium. The near degeneracy of 2s 2 with 2p 2 is evident. 

It is apparent from Table 2 that the pair correlation energy which is obtained 
for the (2s 2s) pair of -0.03789 a.u., bears little comparison to other values 
currently available. The descrepancy stems from the contribution of higher order 
effects which pass neglected in the first order pair theory. The slow convergence of 
the Rayleigh-Schrodinger perturbation theory is shown by the fact that for the 
(2s 2s) pair of beryllium E a is ~ 24 % of E 2 whilst for the (ls ls) pair, for which the 
higher order corrections are likely to be very small, a figure of -~ 5 % is apposite. 
Should the result for beryllium be compared with that of Byron and Joachain to 
third order in the energy, then the agreement is seen to be quite favourable. 
They obtain a value of -0.03803 a.u., which then is complemented by E 4 (2s 2s) 
= 40.00478 a.u. and E 5 (2s 2s) = -0.00201 to give a total (2s 2s) pair correlation 
energy of -0.04482 a.u. 

In Fig. t the near linear variation on the (2s 2s) pair correlation with atomic 
number is seen to follow closely the pattern predicted some years ago by Linder- 
berg and Shull and discussed more recently by Alper [17, 18]. 

The (ls 2s) Pair 

In consideration of the intershell correlation energy the symmetric and anti- 
symmetric components of the s wave have been represented as: 

~S(rlr2) = ~ C~(r'~r"2 + rTr~) e x p ( - e r  0 exp( -e r2)  , 

~Pa(rl r2) = ~ Ci(rTr"2 - r7 ~ )  exp ( -  e rl) exp ( -  e r2). 
i 

A forty four term expansion with e - - Z  was used to represent tpS(rl r2) and a 
forty five term expansion for tpA(rl r2). The differences between the results with this 
function and the more general function noted earlier involving parameters e and/~ 
were found to be negligible. In the numerical calculation of the higher waves the 
cut off is placed at 19.0/Z a.u. 

The (ls 2s) pair correlation energy is computed to be -0.00606 a.u. It is to be 
noted that although values are not given for this quantity under the authors Geller 
Taylor and Levine, and Szasz, in the total correlation energies which are quoted,. 
a value of - 0.00497 a.u. has been incorporated into their results. 

As may be seen in Table 2 this is the result of Kelly. Higher values for this 
quantity - 0.00606 a.u. are given by a variety of workers. In our opinion in their 
calculation of the intershell correlation energy by a variational approach the 
basis sets employed are not sufficiently flexible. Should the percentage error in the 
(ls 2s) pair of beryllium be of the same order of magnitude as is evident when the 
He(ls  2s) results of Byron and Joachain, and McKoy and Winter are compared, 
then the value of - 0.00524 quoted for beryllium is too high. Moreover the limit of 
-0.0053 a.u. by Bunge is likely to be exceeded. Recently Pan and King [i9] 
have obtained second order energies for the (ls 2s) pair which are substantially 



-0.004 

-0.006 
Intershe[I 

Correlation 
Energy(a~ 

-0,008 

-0.010 

-0.012 

I 

0:1 012 03 
I/Z 

364 B.C. Webster and R. F. Stewart: 

Fig. 3. The intershell correlation energy for the beryllium sequence as a function of 1/Z (a.u.) 

larger in magnitude than those of Byron and Joachain, in accord with the viewpoint 
propagated here. 

As the atomic number varies from lithium to neon, the intershell correlation 
energy follows the behaviour depicted in Fig. 1. In Fig. 3 it is shown that this 
variation is near to linear in 1/Z. Miller and Ruedenberg have observed this 
relationship within an augmented separated pair calculation [20]. 

It was Schwartz who pointed out that the energy E(l) for singlet states should 
vary with I as 1-4 and a guess was made that for the triplet states "the asymptotic 
rate of decrease would be 1-6'' [10]. In Fig. 4 the function log ]ez(1)l is plotted 
against log I. The behaviour for the triplet portion of the (ls 2s) pair is indeed 
seen to converge on the line of slope 6 whilst the singlet states of the (ls ls), (ls 2s) 
and (ls 2s) pairs follow the line of slope 4. The contribution of partial waves 
for l >  10 has been estimated on the basis of this behaviour. 

Concluding Discussion 

One of the purposes of this study has been to find an efficient technique 
with respect to time of computation and accuracy in calculation for obtaining 
pair functions for atoms. An ultimate objective is to be able to compute two 



-70 

-6.0 

-5.0 

[oglE2(l~) 

-~.0 

-3.0 

-20 

First Order Pair Functions 

S 3S 

s i$ 

m ~) i 
0.02 0. 6 1.0 

tog 
Fig. 4. The asymptotic behaviour of the second order energy 

365 

electron functions for atoms of any atomic number. In 1962 Szasz wrote "we 
shall be able to apply the theory of correlated wave functions to the calculation 
of wave functions for atoms with any number of electrons". That this is possible 
in principle may be correct, yet in the ensuing ten years no solutions for other 
than light atoms have appeared. 

A combination of the variational perturbation approach and a numerical 
approach when the trial functions are represented by a Legendre expansion 
would seem to offer a tractable route to the evaluation of pair functions. In the 
four electron sequence studied the first order pair equations have been solved to 
quite a high order of accuracy without excessive computation time. The central 
deficiency, as has been remarked, lies in the need for including higher order effects 
for the (2s 2s) pair. The calculations have not been extended in this fashion, 
since it is not felt that for chemical purposes there is a vital need to seek the remaining 
10% of the correlation energy. It may be seen from Table 3 that 86-91% of the 
correlation energy has been accounted for by the present calculations in a situation 
where a 2p 2 configuration lies in close proximity to the ground state. 

To support such a viewpoint one might consider the calculation of the electron 
affinity of lithium. On the basis of a Hartree-Fock calculation this is evaluated to be 
-0 .12  eV [16]. With the energy of Li taken to be -7.47807 a.u. which is the result 
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of Weiss, a value of + 0.47 eV is found for the electron affinity [203. The experi- 
mental value is cited to be 0.6 eV or alternatively lies between the limits 0.65 eV 
and 1.05 eV [22, 233. Should one estimate that the error in the (2s 2s) pair energy 
is of the order ~-,0.1 eV, the former value observed is matched, when one allows 
,,~0.03 eV for additional terms which pass neglected. A recent study by Victor 
and Laughlin yields 0.591 eV for the electron affinity of lithium, strengthening 
the view that the experimental result of Ya'Akobi is to be preferred [24]. 

In the early calculations of Hartree upon atomic wave functions numerical 
techniques played a dominant role. For a period of time now they have passed 
out of fashion. This is a pity for they are indeed a powerful device in computing 
atomic properties. The manner in which the computation of single centre molecular 
expansions, and of atomic polarisabilities is facilitated with numerical techniques 
will be the subject of subsequent papers. Calculations upon other atomic systems 
also are in progress. 
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